(Auto)Vacuum and You

Gabrielle Roth

Vie.

PDXPUG

RENEWABLE % & FUNDING
@gorthx

twitter, gmail, wordpress

'| use Postgres because
| don't have to care.’

lopics

Vacuum & autovacuum

A little bit about ANALYZE
A little bit about MVCC
Tools

Fun stories

My first VACUUM.

A long time ago...

* Data "warehouse" of VPN usage
* Nightly addition and ageout of data

 Web front end, report generation

‘Hey, It's kinda slow now."

e Did | write some dumb SQL? (No.)
* The adding/deleting rows was the problem.

e | needed to ANALYZE and VACUUM.

Problem 1: Adding "a bunch" of rows

* Query planner uses statistics about data
distribution to make decisions about index usage,
joins, etc

* Adding (or deleting) "a bunch" of rows that
changes the distribution of your data can cause a
sub-optimal plan

 ANALYZE updates these statistics.

stats: pg_class

pgbench=# SELECT relname, reltuples

FROM pg_class
WHERE relname "pgbench_accounts’ ;

-[RECORD 1]---------------
relname pgbench_accounts
reltuples 100002

more statls: pg_stats

pgbench=# SELECT tablename, attname,
most_common_vals

FROM pg_stats

WHERE tablename = 'pgbench_tellers’;

tablename | attname | most_common_vals
_________________ T
pgbench_tellers | tid
pgbench_tellers | tbalance {-20716, -5820}
pgbench_tellers | filler
pgbench_tellers | bid
{1,2,3,4,5,...98,99,100}

10

Problem 2: Deleting "a bunch” of rows

Actually, we should talk about MVCC first.

(Have a cocktall.)

11

A little MVCC.

Multi-Version Concurrency Control

Allows multiple people to work in the db without @#3$%ing
things up

Accomplished in part via transaction ids (xids)
Take-home message:
e data changes result in dead/obsolete rows

e xid wraparound = bad

12

Problem 2: Deleting "a bunch” of rows

They're not gone, you just can't see them.
They take up space. ("Bloat".)

Indexes point to all versions of a row.
VACUUM fixes this.

(UPDATEs and rolled-back INSERTs can cause
dead rows, t00.)

13

table stats:
0Q_stat_user_tables

pgbench=f SELECT relname,
n_tup_ins, n_tup_upd, n_tup_del,
n_Live_tup, n_dead_tup,
Last_vacuum, Last_analyze

FROM pg_stat_user_tables

WHERE relname = 'pgbench_accounts’;

-[RECORD 1 J----4----cmmmmm e e e e o o -
relname pgbench_accounts
n_tup_1ins 100000
n_tup_upd 73254
n_tup_del ©
n_Live_tup 100002
n_dead_tup 4710

Last_vacuum

Last_analyze 2014-02-17 20:06:29.900437-08

14

pg_stat_user_tables (cont)

* n_tup_* = Incrementing counters; can be reset only
by pg_stat_reset

* n_live_tup = this is a guess :)
* n_dead_tup = reset by a vacuum.

e combine the query on the previous slide with
\watch for additional fun

15

more stats: pgstattuple

e contrib module
« CREATE EXTENSION pgstattuple;

* One-stop shopping!

pgbench=# SELECT tuple_count, tuple_percent,
dead_tuple_count, dead_tuple_percent
FROM pgstattuple(‘pgbench_accounts’);

-[RECORD 1]------ R
tuple_count 100000
tuple_percent 01.06
dead_tuple_count 1592
dead_tuple_percent | 1.45

16

How do | run it”?

VACUUM (the manual kind)

. VACUUM

. VACUUM FULL

. VACUUM FREEZE

. VACUUM ANALYZE (...or just ANALYZE)

e must be table owner or superuser

18

VACUUM

Removes dead rows
Cleans up your indexes
Updates your xids

(hint bits)

SHARE UPDATE EXCLUSIVE lock

19

VACUUM FULL

Frees up actual disk space
ACCESS EXCLUSIVE lock

...and it's rewriting the table on disk, so you need
double the space.

don't bother if the table's just going to retill.

http://rhaas.blogspot.com/2014/03/vacuum-full-
doesnt-mean-vacuum-but.html|

20

http://rhaas.blogspot.com/2014/03/vacuum-full-doesnt-mean-vacuum-but.html

VACUUM FREEZE

Sets a special xid value: relFrozenXid
Prevent xid wraparound

ACCESS EXCLUSIVE lock

Recommended after very large loads to tables that
will see a lot of OLTP

21

'VACUUM] ANALYZE

Updates the planner statistics
SHARE UPDATE EXCLUSIVE

ANALYZE Is actually its own separate thing you can
run by itself!

ANALYZE temp tables after you create them.

22

VACUUM VERBOSE

pgbench=f vacuum verbose pgbench_branches;

INFO: wvacuuming “public.pgbench_branches”

INFO: 1index “pgbench_branches_pkey” now contains 1 row
versions 1n 2 pages

DETAIL: O 1index row versions were removed.

O 1ndex pages have been deleted, 0 are currently
reusable.

CPU 0.00s/0.00u sec elapsed 0.00 sec.

INFO: “pgbench_branches”: found 166 removable, 1
nonremovable row versions in 1 out of 1 pages
DETAIL: O dead row versions cannot be removed yet.
There were 203 unused 1item pointers.

O pages are entirely empty.

CPU 0.00s/0.00u sec elapsed 0.00 sec.

23

Autovacuum!

All my problems are over!

e Available since 8.1

* A kinder, gentler’ vacuum

25

My table isn't being vacuumed!

(dramatization)

SELECT relname, n _live tup, n dead tup,
last _autovacuum, last _autoanalyze

FROM pg_stat user tables

WHERE relname = 'pgbench_accounts’;

[RECORD 1 Je---mmmcmmmmmmmoeomoe

relname pgbench_accounts
n_Live_tup 1000000
n_dead_tup 040990

Last_autovacuum
Last_autoanalyze

20

'S autovacuum even on?

ps -ef | grep vacuum
postgres 1101 972 0 06:37 9 00:00:33 postgres: autovacuum

Launcher
process

in postgresql.conf:

autovacuum = on Hdefault
track_counts = true #Hdefault

posql shell:
pgbench=f SELECT name, setting || unit AS setting FROM

pg—settings
WHERE category = '"Autovacuum’; pgbench=f SHOW autovacuum;

Verity that track_counts is enabled, too

27

At what point is a vacuum triggered”?

* In postgresgl.cont:

Hautovacuum_vacuum_threshold = 50

B min number of row updates before vacuum
Hautovacuum_vacuum_scale_factor = 0.2

B fraction of table size before vacuum

28

autovacuum: do the math.

- vacuum threshold =
autovacuum_vacuum_threshold +
autovacuum_vacuum_scale_factor *
pgclass.reltuples

-+ 1,000,000 row table =50 + (0.2 * 1000000) =
200,050 9500 dead tuples is not even close to
triggering a vacuum

29

How this IS supposed to work.

wort)

STATS foured
collecks sts Seax
~\Ln_ A\oad"'jt

e

MSCRACES | U

Nea\exs et

3 Tk?; $+l¢

(oK.

MW\J &9 SWMW MJ)

Aeedn +vac Sce ¥ pgx)%?. relinpies
vl
VAL \.L\.U"(\-\. €03 oI55S . wSeges
) S _scole
@#M\;}w [0_-de2d 7 axa.Mf‘%g
”’3{‘; o/ . AnAnyzEl.
e

. = : ré“dly\‘—g Trxsw aC—
: vﬂ& Pg C\OSS
i‘w\r\j do ve v pacesiy

: B,
n-desd spord " VESE

30

pg_stat_user_tables pg class.reltuples

n live tup
_dead_tu
_tup ins

n tup upd

n\tup del

sets
pg stat user table

n_dead tup=0

OBTW..

UPDATE
w/estimate

/
ANALYZE VACUUM

RUNS WHEN

n_dead_tup >

analyze_threshold + RUNS WHEN
analyze_scale * n_dead_tup >
pg_class.reltuples vacuum_threshold +

vacuum_scale *
pg_class.reltuples

autovacuum Waits naptime between table checks
Aacmon-: Checks tables in physical order

Tuning

GUCs of particular interest

e autovacuum_vacuum_threshold

e autovacuum_vacuum_scale_tactor
e autovacuum_max_workers

e autovacuum_nap_time

e autovacuum_cost_limit

* autovacuum_cost_delay

33

GUCS+

autovacuum_analyze_threshold and scale_tactor
autovacuum_freeze_max_age

Note that you will get a vac freeze to prevent
wraparound even if you have autovacuum
disabled.

autovacuum_multixact_freeze_max_age (9.3+)

autovacuum_work_mem (9.47)

34

Before we begin...

Back up your config!

Have metrics

Make use of 'include’ in postgresqgl.conf
log_autovacuum_min_duration = [YMMV]

Collect table stats (just for kicks)

35

sample log message

Log_autovacuum_min_duration = 0

%L0G: auvtomatic vacuum of table
"ttrss.public.ttrss_feedbrowser_cache”: i1ndex scans: 1
pages:. O removed, 11 remailn

tuples: 303 removed, 303 remaln

buffer usage: 82 hits, 0 misses, 10 dirtied

avg read rate: 0.000 MB/s, avg write rate: 3.585 MB/s
system usage: CPU 0.00s/0.00u sec elapsed 0.02 sec

%LO0G: auvtomatic analyze of table
"ttrss.public.ttrss_feedbrowser_cache” system usage:

CPU
0.00s5/0.00uU sec eclapsed 0.03 sec

36

GUCs: when will vac happen

#autovacuum_vacuum_threshold = 50
min number of row updates before vacuum

#autovacuum_ vacuum_ scale factor =0.2
fraction of table size before vacuum

Live_tup | default | © rows, 0.2 sf | 100k rows, 0O sf
------------- R e S
1,000 250 200 100,000
10,000 2,050 2,000 100,000
100,000 20,050 20,000 100,000
1,000,000 200,050 200,000 100,000
10,000,000 2 000,050 2 000,000 100,000
100,000,000 20,000,050 20,000,000 100,000
1,000,000,000 | 200,000,050 200,000,000 100,000

37

GUCs: how many tables can
be vacced at ~ the same time

- #autovacuum_max_workers = 3
max number of autovacuum subprocesses

- requires a restart

- #autovacuum_naptime = 1min

- # time between autovacuum runs

- These are per-cluster.

- As you add workers, they'll go slower.

- Be mindful of maintenance_work_mem if you are on <
9.4: keep av_max_workers * maint_work_mem < memory

38

GUCs: How fast can | make
this thing go

- #autovacuum vacuum cost limit = -1
default vacuum cost limit for autovacuum:; -1 means use
vacuum_cost_limit (default: 200 "credits”)

- #autovacuum_vacuum_cost_delay = 20ms
default vacuum cost delay for autovacuum, in

milliseconds; -1 means use vacuum_cost_delay (default:
Oms)

- speed this up by:

- Increasing cost_limit to some value in the hundreds, or
(and?)

- setting cost_delay to O

39

Caveats!

* All of these GUCs that we just looked at* interact together.
 Dramatic changes in table size may require adjustments
* You still need to manually:

« VACUUM [FREEZE] ANALYZE after large data loads

« ANALYZE temp tables
e [sn't this fun?

*and some others outside the scope of this talk

40

per-table adjustment

can't do this with naptime or max_workers

- CREATE TABLE mytable (blahblah) WITH
(autovacuum_vacuum_threshold = 2000) ;

 ALTER TABLE mytable SET
(autovacuum_vacuum_threshold = 5000) ;

- view with \d+:
Options: autovacuum_vacuum_threshold=5000

-+ --reset to value from postgresaql.conf!
ALTER TABLE mytable RESET

(autovacuum_vacuum_threshold) ;

41

Other fun things I've
encountered

OH #@"&(%!!!

(reenactment)

relname ins | upd | del Live | dead L_aa L_av

pgbench_branches o) 0] o)) 0]
pgbench_tellers o) o) o) o) o)
pgbench_history o) 0] o)) 0]
pgbench_accounts o) o) o) o) o)

43

streaming rep + vacuum

- table stats don't get replicated
- (planner stats do, but we can't see those)
» You can't run VACUUM on a standby:

postgres=# vacuum mytable;
ERROR: cannot execute VACUUM during recovery

» vacuum jobs are WAL logged

44

Orphan temp tables

LOG: autovacuum: found orphan temp table
"pg_temp_5444" . "feeds” 1n database “ttrss”

45

Skipped tables

2014-09-12 01:44:25.583
PDT, ,,30540, ,4dbffboc.7bsb,5, ,2014-09-12
01:41:42 PDT,74/868,0,L0G,55P03, "skipping
analyze of ““foo”"” --- Lock not
availlable”

IIIIII

46

INnheritance

- VACUUM/ANALYZE on individual tables only
- per-table config settings aren't inherited either

47

Wishlist

- An easier way to see what's being vacuumed & the
progress thereof

-+ Can use a combo of ps & looking at pg_locks
hoping to catch something going by

-+ A way to view the vacuum queue & see WHO'S
NEXT.

48

Help! (and further reading)

- Pg docs + -admin + Pg wiki https://
wiki.postgresqgl.org/wiki/VacuumHeadaches

- Xid wraparound: https://devcenter.neroku.com/
articles/postgresqgl-concurrency

-+ Josh B's "Freezing Your Tuples Off” series

- http://rhaas.blogspot.com/2011/03/troubleshooting-
stuck-vacuums.html

- http://rhaas.blogspot.com/2014/03/vacuum-full-
doesnt-mean-vacuum-but.html

49

http://rhaas.blogspot.com/2014/03/vacuum-full-doesnt-mean-vacuum-but.html

Thank you!

PgCont.EU
SPI
PDXPUG
Selena Deckelmann
Robert Haas

Simon Riggs

