
(Auto)Vacuum and You
Gabrielle Roth

Me.

PDXPUG

!

@gorthx

twitter, gmail, wordpress

"I use Postgres because
I don't have to care."

Topics
• Vacuum & autovacuum

• A little bit about ANALYZE

• A little bit about MVCC

• Tools

• Fun stories

4

My first VACUUM.

A long time ago...

• Data "warehouse" of VPN usage

• Nightly addition and ageout of data

• Web front end, report generation

6

"Hey, it's kinda slow now."

• Did I write some dumb SQL? (No.)

• The adding/deleting rows was the problem.

• I needed to ANALYZE and VACUUM.

7

Problem 1: Adding "a bunch" of rows

• Query planner uses statistics about data
distribution to make decisions about index usage,
joins, etc

• Adding (or deleting) "a bunch" of rows that
changes the distribution of your data can cause a
sub-optimal plan

• ANALYZE updates these statistics.

8

stats: pg_class

pgbench=# SELECT relname, reltuples

FROM pg_class 
WHERE relname = 'pgbench_accounts';

-[RECORD 1]---------------

relname |pgbench_accounts

reltuples | 100002	

9

more stats: pg_stats
pgbench=# SELECT tablename, attname,
most_common_vals
FROM pg_stats
WHERE tablename = 'pgbench_tellers';
 tablename | attname | most_common_vals
-----------------+----------+------------------
 pgbench_tellers | tid |
 pgbench_tellers | tbalance | {-20716,-5820}
 pgbench_tellers | filler |
 pgbench_tellers | bid |
{1,2,3,4,5,...98,99,100}

10

Problem 2: Deleting "a bunch" of rows

Actually, we should talk about MVCC first.

(Have a cocktail.)

11

A little MVCC.
!

• Multi-Version Concurrency Control

• Allows multiple people to work in the db without @#$%ing
things up

• Accomplished in part via transaction ids (xids)

• Take-home message:

• data changes result in dead/obsolete rows

• xid wraparound = bad

12

Problem 2: Deleting "a bunch" of rows

• They're not gone, you just can't see them.

• They take up space. ("Bloat".)

• Indexes point to all versions of a row.

• VACUUM fixes this.

• (UPDATEs and rolled-back INSERTs can cause
dead rows, too.)

13

table stats:
pg_stat_user_tables

pgbench=# SELECT relname,
 n_tup_ins, n_tup_upd, n_tup_del,
 n_live_tup, n_dead_tup,
 last_vacuum, last_analyze
 FROM pg_stat_user_tables
 WHERE relname = 'pgbench_accounts';
 -[RECORD 1]----+------------------------------
relname | pgbench_accounts
n_tup_ins | 100000
n_tup_upd | 73254
n_tup_del | 0
n_live_tup | 100002
n_dead_tup | 4710
last_vacuum |
last_analyze | 2014-02-17 20:06:29.900437-08

14

pg_stat_user_tables (cont)

• n_tup_* = incrementing counters; can be reset only
by pg_stat_reset

• n_live_tup = this is a guess :)

• n_dead_tup = reset by a vacuum.

• combine the query on the previous slide with
\watch for additional fun

15

more stats: pgstattuple
• contrib module

• CREATE EXTENSION pgstattuple;

• One-stop shopping!
pgbench=# SELECT tuple_count, tuple_percent,
 dead_tuple_count, dead_tuple_percent
 FROM pgstattuple('pgbench_accounts');
-[RECORD 1]------+-------
tuple_count | 100000
tuple_percent | 91.06
dead_tuple_count | 1592
dead_tuple_percent | 1.45

16

How do I run it?

VACUUM (the manual kind)

• VACUUM

• VACUUM FULL

• VACUUM FREEZE

• VACUUM ANALYZE (...or just ANALYZE)

• must be table owner or superuser

18

VACUUM
• Removes dead rows

• Cleans up your indexes

• Updates your xids

• (hint bits)

• SHARE UPDATE EXCLUSIVE lock

19

VACUUM FULL
• Frees up actual disk space

• ACCESS EXCLUSIVE lock

• ...and it's rewriting the table on disk, so you need
double the space.

• don't bother if the table's just going to refill.

• http://rhaas.blogspot.com/2014/03/vacuum-full-
doesnt-mean-vacuum-but.html

20

http://rhaas.blogspot.com/2014/03/vacuum-full-doesnt-mean-vacuum-but.html

VACUUM FREEZE

• Sets a special xid value: relFrozenXid

• Prevent xid wraparound

• ACCESS EXCLUSIVE lock

• Recommended after very large loads to tables that
will see a lot of OLTP

21

[VACUUM] ANALYZE

• Updates the planner statistics

• SHARE UPDATE EXCLUSIVE

• ANALYZE is actually its own separate thing you can
run by itself!

• ANALYZE temp tables after you create them.

22

VACUUM VERBOSE
pgbench=# vacuum verbose pgbench_branches;
INFO: vacuuming "public.pgbench_branches"
INFO: index "pgbench_branches_pkey" now contains 1 row
versions in 2 pages
DETAIL: 0 index row versions were removed.
0 index pages have been deleted, 0 are currently
reusable.
CPU 0.00s/0.00u sec elapsed 0.00 sec.
INFO: "pgbench_branches": found 166 removable, 1
nonremovable row versions in 1 out of 1 pages
DETAIL: 0 dead row versions cannot be removed yet.
There were 203 unused item pointers.
0 pages are entirely empty.
CPU 0.00s/0.00u sec elapsed 0.00 sec.

23

Autovacuum!

All my problems are over!

• Available since 8.1

• A "kinder, gentler" vacuum

25

My table isn't being vacuumed!
(dramatization)

SELECT relname, n_live_tup, n_dead_tup,
last_autovacuum, last_autoanalyze 
FROM pg_stat_user_tables 
WHERE relname = 'pgbench_accounts';	

-[RECORD 1]----+-----------------
relname | pgbench_accounts
n_live_tup | 1000000
n_dead_tup | 9499
last_autovacuum |
last_autoanalyze |
 

26

Is autovacuum even on?
• ps -ef | grep vacuum
 postgres 1101 972 0 06:37 ? 00:00:33 postgres: autovacuum

launcher  
process

• in postgresql.conf:
 autovacuum = on #default  

track_counts = true #default

• psql shell:
 pgbench=# SELECT name, setting || unit AS setting FROM

pg_settings  
WHERE category = 'Autovacuum'; pgbench=# SHOW autovacuum;

• Verify that track_counts is enabled, too

27

At what point is a vacuum triggered?

• in postgresql.conf:
!

 #autovacuum_vacuum_threshold = 50
 # min number of row updates before vacuum
 #autovacuum_vacuum_scale_factor = 0.2
 # fraction of table size before vacuum

28

autovacuum: do the math.

• vacuum threshold = 
autovacuum_vacuum_threshold +
autovacuum_vacuum_scale_factor *
pgclass.reltuples!

• 1,000,000 row table = 50 + (0.2 * 1000000) =
200,050 9500 dead tuples is not even close to
triggering a vacuum

29

How this is supposed to work.

30

Tuning

GUCs of particular interest
• autovacuum_vacuum_threshold

• autovacuum_vacuum_scale_factor

• autovacuum_max_workers

• autovacuum_nap_time

• autovacuum_cost_limit

• autovacuum_cost_delay

33

GUCS+
• autovacuum_analyze_threshold and scale_factor

• autovacuum_freeze_max_age

• Note that you will get a vac freeze to prevent
wraparound even if you have autovacuum
disabled.

• autovacuum_multixact_freeze_max_age (9.3+)

• autovacuum_work_mem (9.4?)

34

Before we begin...
• Back up your config!

• Have metrics

• Make use of 'include' in postgresql.conf

• log_autovacuum_min_duration = [YMMV]

• Collect table stats (just for kicks)

35

sample log message
log_autovacuum_min_duration = 0
!
%LOG: automatic vacuum of table
"ttrss.public.ttrss_feedbrowser_cache": index scans: 1
pages: 0 removed, 11 remain
tuples: 303 removed, 303 remain
buffer usage: 82 hits, 0 misses, 10 dirtied
avg read rate: 0.000 MB/s, avg write rate: 3.585 MB/s
system usage: CPU 0.00s/0.00u sec elapsed 0.02 sec
!
%LOG: automatic analyze of table
"ttrss.public.ttrss_feedbrowser_cache" system usage:
CPU
0.00s/0.00u sec elapsed 0.03 sec

36

GUCs: when will vac happen
#autovacuum_vacuum_threshold = 50  
! # min number of row updates before vacuum!
#autovacuum_vacuum_scale_factor = 0.2!
! # fraction of table size before vacuum!
 live_tup | default | 0 rows, 0.2 sf | 100k rows, 0 sf |

 -------------+-------------+------------------+------------------

 1,000 | 250 | 200 | 100,000 |

 10,000 | 2,050 | 2,000 | 100,000 |

 100,000 | 20,050 | 20,000 | 100,000 |

 1,000,000 | 200,050 | 200,000 | 100,000 |

 10,000,000 | 2,000,050 | 2,000,000 | 100,000 |

 100,000,000 | 20,000,050 | 20,000,000 | 100,000 |

1,000,000,000 | 200,000,050 | 200,000,000 | 100,000 |

37

GUCs: how many tables can
be vacced at ~ the same time
• #autovacuum_max_workers = 3  

max number of autovacuum subprocesses!
• requires a restart!

• #autovacuum_naptime = 1min!
• # time between autovacuum runs!
• These are per-cluster.!
• As you add workers, they'll go slower.!
• Be mindful of maintenance_work_mem if you are on <

9.4: keep av_max_workers * maint_work_mem < memory	

38

GUCs: How fast can I make
this thing go

• #autovacuum_vacuum_cost_limit = -1  
default vacuum cost limit for autovacuum; -1 means use
vacuum_cost_limit (default: 200 ”credits”)!

• #autovacuum_vacuum_cost_delay = 20ms 
default vacuum cost delay for autovacuum, in
milliseconds; -1 means use vacuum_cost_delay (default:
0ms)!

• speed this up by:!
• increasing cost_limit to some value in the hundreds, or

(and?) !
• setting cost_delay to 0 	

39

Caveats!
• All of these GUCs that we just looked at* interact together.

• Dramatic changes in table size may require adjustments

• You still need to manually:

• VACUUM [FREEZE] ANALYZE after large data loads

• ANALYZE temp tables

• Isn't this fun?

*and some others outside the scope of this talk

40

per-table adjustment
• can't do this with naptime or max_workers
• CREATE TABLE mytable (blahblah) WITH  

 (autovacuum_vacuum_threshold = 2000);
• ALTER TABLE mytable SET

(autovacuum_vacuum_threshold = 5000); 	

• view with \d+:
Options: autovacuum_vacuum_threshold=5000

• -- reset to value from postgresql.conf!  
 ALTER TABLE mytable RESET

 (autovacuum_vacuum_threshold);
	
 	
 	

41

Other fun things I've
encountered

OH !#@*&(%!!!
(reenactment)

 relname | ins | upd | del | live | dead | l_aa | l_av
-----------------+-----+-----+-----+------+------+------+------
pgbench_branches | 0 | 0 | 0 | 0 | 0 | |
pgbench_tellers | 0 | 0 | 0 | 0 | 0 | |
pgbench_history | 0 | 0 | 0 | 0 | 0 | |
pgbench_accounts | 0 | 0 | 0 | 0 | 0 | |

43

streaming rep + vacuum

• table stats don't get replicated!
• (planner stats do, but we can't see those)!
• You can't run VACUUM on a standby:!
postgres=# vacuum mytable;
ERROR: cannot execute VACUUM during recovery
• vacuum jobs are WAL logged	

44

Orphan temp tables

LOG: autovacuum: found orphan temp table
"pg_temp_5444"."feeds" in database "ttrss"

45

Skipped tables

2014-09-12 01:44:25.583
 PDT,,,30540,,4dbffb0c.7b5b,5,,2014-09-12
 01:41:42 PDT,74/868,0,LOG,55P03,"skipping
 analyze of ""foo"" --- lock not
available",,,,,,

46

Inheritance

• VACUUM/ANALYZE on individual tables only !
• per-table config settings aren't inherited either

47

Wishlist

• An easier way to see what's being vacuumed & the
progress thereof!
• Can use a combo of ps & looking at pg_locks

hoping to catch something going by!
• A way to view the vacuum queue & see WHO'S

NEXT.

48

Help! (and further reading)
• Pg docs + -admin + Pg wiki https://

wiki.postgresql.org/wiki/VacuumHeadaches !
• xid wraparound: https://devcenter.heroku.com/

articles/postgresql-concurrency !
• Josh B's ”Freezing Your Tuples Off” series !
• http://rhaas.blogspot.com/2011/03/troubleshooting-

stuck-vacuums.html!
• http://rhaas.blogspot.com/2014/03/vacuum-full-

doesnt-mean-vacuum-but.html	

49

http://rhaas.blogspot.com/2014/03/vacuum-full-doesnt-mean-vacuum-but.html

Thank you!
PgConf.EU!

SPI!

PDXPUG!

Selena Deckelmann!

Robert Haas!

Simon Riggs!

